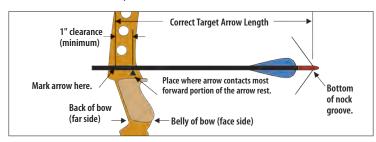
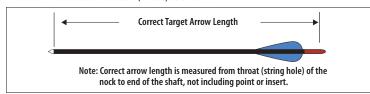
ARROW SELECTION

USING THE TARGET ARROW SELECTION CHART


- Once you have determined your Correct Target Arrow Length and Calculated or Actual Peak Bow Weight, you are ready to select your correct shaft size:
 - 1.A Compound bows. In the "Calculated Peak Bow Weight" column (left-hand side of the chart), select the column with the type of cam on your bow. Locate your Calculated Peak Bow Weight in that column.
 - 1.B Recurve bows and Modern Longbows. In the "Recurve Bow Weight" column (right-hand side of the chart), select the column with the bow type. Next, locate your Actual Peak Bow Weight in that column.
- 2. Move across that bow-weight row horizontally to the column indicating your Correct Arrow Length. Note the letter in the box where your Calculated or Actual Peak Bow Weight row and Correct Target Arrow Length column intersect. The "Shaft Size" box below the chart with the same letter contains your recommended shaft sizes. Select a shaft from the chart depending on the shaft material, shaft weight, and type of shooting you will be doing.

SELECTING THE CORRECT TARGET SHAFT SIZE


Our Target Shaft Selection Chart will help you find the perfect shaft match for your bow—quickly and easily. Advanced, interactive Spine Weight Comparison and Target Shaft Selection Charts are now available online at www.eastonarchery.com

1. Determining Correct Target Arrow Length

The *Correct Arrow Length* for bows (including bows with overdraws) is determined by drawing an extra-long arrow to full draw and having someone mark the arrow one inch in front of where the arrow contacts the most forward portion of the arrow rest.

Bow Draw Length. Draw length is measured at full draw from the bottom of the nock groove to the back (far side) of the bow. Actual arrow length and draw length are only the same if the end of the arrow shaft is even with the back of the bow (far side) at full draw.

2. Determining Actual Peak Bow Weight Compound Bows

Compound bows must be measured at the peak bow weight as the bow is being drawn and not while letting the bow down.

The suggested shaft sizes in the charts were determined using a "Standard" Setup which includes:

- Use of a release aid
- Compound bow with brace height greater than 61/2"

If your setup differs from the "Standard" Setup, use the Variables (following) to make adjustments to determine the *Calculated Peak Bow Weight* so the correct arrow size can be selected on the chart.

Variables to the "Standard" Setup for Compound Bows

- Point weight over 100 grains—Add 3 lbs. for each 25 grains heavier than 100 grains.
- Bows with brace heights less than 61/2"—Add 5 lbs.
- Finger release—Add 5 lbs.

Overdraw Compound Bows

If you are using an overdraw, make the variable calculations (if any), and then modify the *Calculated Peak Bow Weight* of your bow using the chart below.

 Length of Overdraw
 1"
 2"
 3"
 4"
 5"

 For 50#-70# Actual/Calculated Peak Bow Weight, add to bow weight 1#
 3#
 6#
 9#
 12

3. DETERMINING ACTUAL PEAK BOW WEIGHT RECURVE AND MODERN LONGBOWS

Your local archery pro shop is the best place to determine the actual draw weight of your bow. Actual Peak Bow Weight for recurve bows and longbows should be measured at your draw length.

LOW POUNDAGE RECURVE BOW	YOUR ARROW LENGTH										
Bow Weight—Ibs. Finger Release	21"	22"	23"	24"	25"	26"	27"				
16–20 lbs. (7.3–9.1 kg)			Y1	Y1	Y2	Y3	Y4				
20–24 lbs. (9.1–10.9 kg)		Y1	Y1	Y2	Y 3	Y 4	Y5				
24–28 lbs. (10.9–12.7 kg)	Y1	Y1	Y2	Y 3	Y 4	Y5	Y6				
28–32 lbs. (12.7–14.5 kg)	Y1	Y2	Y 3	Y 4	Y5	Y6	Y7				
32–36 lbs. (14.5–16.3 kg)	Y2	Y 3	Y 4	Y5	Y 6	Y7					
36–40 lbs. (16.3–18.1 kg)	Y3	Y 4	Y5	Y6	Y7						

Note: If your arrow shaft is longer than inch length shown, round-up to the next longer increment.

Size	Spine	Model	Weight Grs/Inch	Size	Spine	Model	Weight Grs/Inch
		Group	Y1		(Group '	Y2
2000	2.000	Carb1	3.4	1800	1.800	Carb1	3.6
2000	2.000	Apollo	3.4	1800	1.800	Apollo	3.6
2000	2.000	Inspire	3.4	1800	1.800	Inspire	3.6
1214	2.501	75	5.9	1413	2.036	75	5.9
		Group	Y3			Group '	Y4
1600	1.600	Carb1	3.8	15020-		A/C/G	4.7
1600	1.600	Apollo	3.8	2-00	1.500	A/C/C	4.7
1600	1.600	Inspire	3.8	1400	1.400	Carb1	4.2
1416	1.684	75	7.2	1400	1.400	Apollo	4.2
1410	1.004	13	7.2	1400	1.400	Inspire	3.9
				1400	1.400	Vector	3.9
				1416	1.684	75	7.2
				1410	1.004	73	7.2
		Group	Y5		(Group '	Y 6
1250	1.250	A/C/E	5.1	1250	1.250	A/C/E	5.1
1300	1.300	A/C/G	5.1	1150	1.150	A/C/G	5.5
3L-00	1.300	A/C/C	5.1	3-00	1.150	A/C/C	5.5
1200	1.200	Apollo	5.5	1150	1.200	Carb1	5.0
1200	1.200	Inspire	7.2	1200	1.200	Apollo	5.5
1400	1.400	Vector	3.9	1200	1.200	Inspire	7.2
1514	1.379	Х7	6.8	1000	1.000	Vector	5.0
1516	1.403	75	7.3	1516	1.403	75	7.3
				1614	1.403	Х7	7.7
		Group	V7			KEV	
1000	1.000	A/C/E	5.7	A/C/E	Alumin	um/Carbor	/Fytrama
1100	1.100	A/C/G	5.1	X10			num/Carbon)
1000	1.000	X10	5.3	A/C/G		Aluminum	
1000	1.000	A/C/G	5.7	A/C/C	•		n/Composite
3-00	1.150	A/C/C	5.5	Carb1			ED° Carbon
1000	1.000	Carb1	5.0		Carbon		
1070	1.070	Apollo	5.9		• Carbon		
1000	1.000	Inspire	7.2		Carbon		
1000	1.000	Vector	5.0	Х7		se (7178 al	lloy)
1000	1.000	ACCIOI	5.0			, , ,	,,

Note: To determine weight at your shaft length, multiply the grains-per-inch (gpi) by your actual shaft length not including point, insert, or UNI Bushing.

1614

1616

1.153 X7

1.079

7.7

XX75: Platinum Plus, Tribute, Jazz

and Neos (7075 alloy)

É

COMPOUND BOW — Release Aid Calculated Peak Bow Weight—lbs

YOUR ARROW

LENGTH FOR TARGET • FIELD • 3D

RECURVE BOW

Bow Rating - up to 275 FPS	Bow Rating - 276–300 FPS	Bow Rating - 301—320 FPS	Bow Rating - 321–340 FPS	23"	24"	25"	26"	27"	28"	29"	30"	31"	32"	Bow Weight—lbs Finger Releas
29–35 lbs. (13.2–15.9 kg)				00	01	02	03	T1	T2	Т3				21–27 lbs. (9.5–12.2 kg)
35–40 lbs. (15.9–18.1 kg)	29-35 lbs. (13.2-15.9 kg)			01	02	03	T1	T2	Т3	T4	T5			27–32lbs. (12.2–14.5 kg)
40–45 lbs. (18.1–20.4 kg)	35-40 lbs. (15.9-18.1 kg)	29–35 lbs. (13.2–15.9 kg)		02	03	T1	T2	Т3	T4	T5	Т6	Т7		32–36 lbs. (14.5–16.3 kg)
45–50 lbs. (20.4–22.7 kg)	40-45 lbs (18.1-20.4 kg)	35–40 lbs. (15.9–18.1 kg)		03	T1	T2	Т3	T4	T5	Т6	Т7	Т8	Т9	36-40 lbs. (16.3-18.1 kg)
50-55 lbs. (22.7-24.9 kg)	45-50 lbs. (20.4-22.7 kg)	40–45 lbs. (18.1–20.4 kg)	35-40 lbs. (15.9-18.1 kg)	T1	T2	Т3	T4	T5	Т6	Т7	Т8	Т9	T10	40-44 lbs (18.1-20.0 kg)
55-60 lbs (24.9-27.2 kg)	50-55 lbs. (22.7-24.9 kg)	45–50 lbs. (20.4–22.7 kg)	40-45 lbs. (18.1-20.4 kg)	T2	Т3	T4	T5	Т6	Т7	Т8	Т9	T10	T11	44–48 lbs. (20.0–21.8 kg)
60-65 lbs. (27.2-29.5 kg)	55-60 lbs. (24.9-27.2 kg)	50–55 lbs. (22.7–24.9 kg)	45–50 lbs. (20.4–22.7 kg)	Т3	T4	Т5	Т6	T7	Т8	Т9	T10	T11	T12	48–52 lbs (21.8–23.6 kg)
65-70 lbs (29.5-31.8 kg)	60-65 lbs. (27.2-29.5 kg)	55-60 lbs. (24.9-27.2 kg)	50-55 lbs. (22.7-24.9 kg)	T4	T5	T6	T7	Т8	Т9	T10	T11	T12	T13	53-57 lbs (24.0-25.9 kg)
70-76 lbs. (31.8-34.5 kg)	65-70 lbs. (29.5-31.8 kg)	60-65 lbs. (27.2-29.5 kg)	55–60 lbs. (24.9–27.2 kg)	T5	Т6	Т7	Т8	Т9	T10	T11	T12	T13	T13	58-62 lbs. (26.3-28.1 kg)
76–82 lbs (34.5–37.2 kg)	70-76 lbs. (31.8-34.5 kg)	65-70 lbs. (29.5-31.8 kg)	60-65 lbs. (27.2-29.5 kg)	T6	T7	Т8	Т9	T10	T11	T12	T13	T13	T14	63-67 lbs. (28.6-30.4 kg)
82-88 lbs. (37.2-39.9 kg)	76-82 lbs (34.5-37.2 kg)	70-76 lbs. (31.8-34.5 kg)	65-70 lbs. (29.5-31.8 kg)	Т7	Т8	Т9	T10	T11	T12	T13	T13	T14		68-73 lbs. (30.8-33.1 kg)

For ATA Speed of 341–350 FPS: Start in 321–340 FPS column, drop down one row in chart: Examples:

58lb—31in—345 FPS: drops down one row, still in Group T13

46lb–28in–345 FPS: drops down one row, shift from Group T8 to Group T9

For ATA Speed of 351+ FPS: Start in 321–340 FPS column, drop down two rows in chart:

Examples: 59lb—31in—355 FPS: drops down two rows, shift from Group T13 to Group T14

47lb—28in—355 FPS: drops down two rows, shift from Group T8 to Group T10

Size	Spine	Model	Weight Grs/inch	Size	Spine	Model	Weight Grs/inch	Size	Spine	Model	Weight Grs/inch	Size	Spine	Model	Weight Grs/inch
		Group 00				Group 01				Group 02				Group 03	
1800	1.800	Carb1	3.6	2-00	1.500	A/C/G	4.7	1250	1.250	A/C/E	5.1	1100	1.100	A/C/E	5.1
1800	1.800	Apollo	3.6	1500	1.500	A/C/G	4.7	1300	1.300	A/C/G	5.1	1150	1.150	A/C/G	5.5
1800	1.800	Inspire	3.6	1600	1.600	Carb1	3.8	3L-00	1.300	A/C/C	5.1	3-00	1.150	A/C/C	5.5
1214	2.501	75	5.9	1600	1.600	Apollo	3.8	1400	1.400	Carb1	4.2	1150	1.150	Carb1	5.0
1413	2.036	75	5.9	1600	1.600	Inspire	3.8	1400	1.400	Apollo	4.2	1200	1.200	Inspire	7.2
				1416	1.684	75	7.1	1400	1.400	Inspire	4.2	1200	1.200	Apollo	5.5
				1516	1.403	75	7.3	1400	1.400	Vector	3.9	1000	1.000	Vector	5.0
								1514	1.379	Х7	6.8	1614	1.153	Х7	7.7

	Gro	oup T3			Gro	oup T4			Gro	up T5			Gro	oup T6	
*720•780R	0.720-0.780	A/C/E	6.4	*670•720R	0.670•0.720	A/C/E	5.9	*620•670R	0.620 • 0.670	A/C/E	6.1	*570•620R	0.570-0.620	A/C/E	6.3
*700•750R	0.700 - 0.750	X10	6.7	*650•700R	0.650 • 0.700	X10	6.8	*600-650R	0.600 • 0.650	X10	7.0	*550•600R	0.550-0.600	X10	7.5
720	0.720	ProTour	6.2	670	0.670	ProTour	6.5	620	0.620	ProTour	6.7	570	0.570	ProTour	6.9
*710 - 810R	0.710-0.810	A/C/G	6.5	*660•710R	0.660•0.710	A/C/G	6.9	*610•660R	0.610•0.660	A/C/G	7.3	*540•610R	0.540 • 0.610	A/C/G	7.7
3X-04	0.830	A/C/C	6.7	3L-04	0.750	A/C/C	7.0	3-04	0.680	A/C/C	7.2	3L-18	0.620	A/C/C	7.5
3L-04	0.750	A/C/C	7.0	3-04	0.680	A/C/C	7.2	660	0.660	Carb1	6.6	600	0.600	Carb1	6.9
730	0.730	Carb1	6.0	660	0.660	Carb1	6.6	630	0.630	Inspire	7.9	570	0.570	Inspire	8.2
750	0.750	Inspire	8.1	630	0.630	Inspire	7.9	670	0.670	Apollo	7.7	610	0.610	Apollo	8.1
840	0.840	Apollo	6.5	740	0.740	Apollo	7.2	2013	0.610	75	9.0	2013	0.610	75	9.0
1813	0.874	75	7.9	1913	0.733	75	8.3	1914	0.658	X7	9.3	2014	0.579	Х7	9.6
1814	0.799	X7	8.6	1914	0.658	Х7	9.3	1916	0.623	75	10.0	1916	0.623	75	10.1
1816	0.756	75	9.3									475	0.475	SDRIVE 23	6.4
												500	0.500	HSPEED	6.9
	-						-					570	0.570	PRO	6.6

	Gro	oup T9			Gro	up T10			Grou	ıp T11			Gro	oup T12	
*430•470R	0.430 • 0.470	A/C/E	7.0	*400•430R	0.400 • 0.430	A/C/E	7.5	*370•400R	0.370-0.400	A/C/E	7.9	370R	0.370	A/C/E	7.9
*410•450R	0.410•0.450	X10	8.5	*380•410R	0.380-0.410	X10	8.9	380R	0.380	X10	8.9	350R	0.350	X10	8.4
420	0.420	ProTour	8.0	380	0.380	ProTour	8.4	380	0.380	ProTour	8.4	340	0.340	ProTour	8.8w
*430•480R	0.430 • 0.480	A/C/G	8.9	*430•480R	0.430 • 0.480	A/C/G	8.9	3-49	0.390	A/C/C	8.8	3-60	0.340	A/C/C	9.5
3-39	0.440	A/C/C	8.6	3-39	0.440	A/C/C	8.6	3-60	0.340	A/C/C	9.5	3-71	0.300	A/C/C	9.9
450	0.450	FMJMatch	9.4	3-49	0.390	A/C/C	8.8	375	0.375	FMJMatcl	10.3	290	0.290	SDRIVE 25	7.8
450	0.450	Carb1	8.1	400	0.400	FMJMatch	10.0	290	0.290	SDRIVE 2	5 7.8	350	0.350	X7	8.4
2311	0.450	Х7	8.9	410	0.410	Carb1	8.5	350	0.350	FBORE	8.4	2511	0.348	Х7	9.6
2312	0.423	Х7	9.5	2413	0.365	X7, 75	10.5	2413	0.365	X7, 75	10.5	2512	0.321	X7	10.3
2213	0.460	X7, 75	9.9	2214	0.425	Х7	10.4	2314	0.390	X7, 75	10.8	2612	0.285	Х7	10.7
2214	0.425	Х7	10.4	2314	0.390	X7, 75	10.8	2315	0.340	X7, 75	11.8	2613	0.265	X7	11.5
2115	0.461	75	10.8	2412	0.400	Х7	9.7	2511	0.348	Х7	9.6	2712	0.260	Х7	11.3
375	0.375	SDRIVE 23	6.9	375	0.375	SDRIVE 23	6.9	375	0.375	SDRIVE 2	3 6.9	325	0.325	SDRIVE 23	7.4
400	0.400	HSPEED	7.4	400	0.400	HSPEED	7.4	400	0.400	HSPEED	7.4	340	0.340	HSPEED	8.2
420	0.420	PR0	7.8	380	0.380	PRO	8.9	380	0.380	PRO	8.9	340	0.340	PRO	8.9
												300	0.300	PRO	9.6

Size	Spine	Model	Weight Grs/inch	Size	Spine	Model	Weight Grs/inch
	Gro	oup T1			Gro	oup T2	
*920•1000R	0.920-1.000	A/C/E	5.8	*780•850R	0.780-0.850	A/C/E	6.0
*900•1000R	0.900-1.000	X10	5.8	*750•830R	0.750-0.830	X10	6.4
*880•1000R	0.880-1.000	A/C/G	5.9	770	0.770	ProTour	6.0
2L-04	1.020	A/C/C	6.1	*810•880R	0.810-0.880	A/C/G	6.1
2-04	0.920	A/C/C	6.5	2-04	0.920	A/C/C	6.5
900	0.900	Carb1	5.3	810	0.810	Carb1	5.8
1070	1.070	Apollo	5.9	950	0.950	Apollo	6.2
1000	1.000	Inspire	7.2	900	0.900	Inspire	7.7
1000	1.000	Vector	5.0	1714	0.963	Х7	8.1
1713	1.044	75	7.4	1716	0.880	75	9.0
1714	0.963	Х7	8.1				
1616	1.079	75	8.4				

	Gro	oup T7			Gro	oup T8	
*520•570R	0.520-0.570	A/C/E	6.7	*470•520R	0.470-0.520	A/C/E	6.8
*500•550R	0.500 • 0.550	X10	7.8	*450•500R	0.450 • 0.500	X10	8.1
520	0.520	ProTour	7.3	470	0.470	ProTour	7.6
*540•610R	0.540•0.610	A/C/G	7.7	*480•540R	0.480•0.540	A/C/G	8.4
3-18	0.560	A/C/C	7.8	3-28	0.500	A/C/C	8.1
3-28	0.500	A/C/C	8.1	3-39	0.440	A/C/C	8.6
530	0.530	FMJMatch	8.4	490	0.490	FMJMatch	8.9
550	0.550	Carb1	6.9	500	0.500	Carb1	7.4
560	0.560	Apollo	8.4	2212	0.505	Х7	8.8
2212	0.505	Х7	8.8	2213	0.460	X7,75	9.9
2114	0.510	X7, 75	9.9	2114	0.510	X7, 75	9.9
2016	0.531	75	10.6	475	0.475	SDRIVE 23	6.4
475	0.475	SDRIVE 23	6.4	500	0.500	HSPEED	6.9
500	0.500	HSPEED	6.9	470	0.470	PRO	7.3
520	0.520	PRO	7.0	-			-

	(Froup T13			(roup T14	
325R	0.325	X10	8.8	270	0.270	SDRIVE 27	9.0
3-71	0.300	A/C/C	9.9	2613	0.265	X7	11.5
290	0.290	SDRIVE 25	7.8	2712	0.260	X7	11.3
270	0.270	SDRIVE 27	9.0				
2512	0.321	X7	10.3				
2612	0.285	Х7	10.7				
325	0.325	SDRIVE 23	7.4				
300	0.300	HSPEED	8.2				
300	0.300	PRO	9.6				

Every effort has been made to ensure the accuracy of this Product Guide. Graphics and images are for illustration purposes only. Due to on-going efforts to improve our products, Easton reserves the right to make changes without notice. 2019 products available for sale on or after December 1, 2018.

han two sizes are listed to gother, the weight listed is for the first she
KEY

A/C/C	Aluminum/Carbon/Composite
A/C/E	Aluminum/Carbon/Extreme
A/C/G	A/C/G (Aluminum/Carbon)
Apollo	Apollo
Carb1	Carbon One

HSpeed Hyperspeed
Inspire Inspire
Pro ProComp

FMJMatch FMJ Match

ProTour X10 ProTour Shafts (Aluminum/Carbon)

SDRIVE 27 Super Drive 27
SDRIVE 25 Super Drive 25
SDRIVE 23 Super Drive 23

X7 Eclipse (7178-T9 alloy)
X10 Shafts (Aluminum/Carbon)

75 XX75: Platinum Plus, Tribute, Jazz and Neos (7075 alloy)

are indicated with a letter "R" next to the size.

R The size recommendations for recurve bows

Size Indicates suggested arrow size

Spine Spine of arrow size shown (static) ATA standard

Model Designates arrow model

Weight Listed in grains per inch average for barrelled

or tapered shaft

WWW.EASTONARCHERY.COM

TARGET SHAFT MODELS

//I/(OL/		<i>-</i>						Majaht			
Aluminum/Carbon	Pg#	Materials/C	Construction	Inserts	Points	Nock System	Nock Type	Weight Tolerance⁴	Straightness ¹	Color/Finish	Sizes
X10°	2	fiber bond	ngth carbon ded to a precision y core tube I shaft	N/A	X10 Ballistic Tungsten Break-off or X10 Stainless Steel Break-off	X10 Pin	Pin Nocks X10 Overnock	±0.5 grains	±.0015"	Polished Black Carbon	1000, 900, 830, 750, 700, 650, 600, 550, 500, 450, 410, 380, 350,325
X10° PROTOUR™	2	fiber bond	ngth carbon ded to a precision y core tube — per shaft	N/A	X10 Ballistic Tungsten Break-off or X10 Stainless Steel Break-off	X10 or ProTour Pin	Pin Nocks	±0.5 grains	±.0015"	Polished Black Carbon	770, 720, 670, 620, 570, 520, 470, 420, 380, 340
A/C/E°	4	fiber bond	ngth carbon ded to a precision y core tube I shaft	A/C/E Insert	Screw-in, One-piece or A/C/E Stainless Steel Break-off	A/C/E Pin or Insert Nock	Pin Nocks or G Nock	±0.5 grains	±.0015"	Polished Black Carbon	(1250, 1100) ⁵ , 1000, 920, 850, 780, 720, 670, 620, 570, 520, 470, 430, 400, 370
PROCOM P TM	4	fiber bond	ngth carbon ded to a precision y core tube I shaft	A/C/E Insert	Screw-in, One-piece or A/C/E Stainless Steel Break-off	A/C/E Pin or Insert Nock	Pin Nocks or G Nock	±0.5 grains	±.0015"	Polished Black Carbon	570, 520, 470, 420, 400, 380, 340, 300
A/C/C TM	6	fiber bond	ngth carbon ded to a precision y core tube	RPS Insert or Halfout Insert	One-piece Parabolic, NIBB, or RPS Point	UNI System	G Nock or Pin Nock	±0.5 grains	±.002"	Black, Micro-smooth Finish	2-00, 3L-00, 3-00, 2L-04, 2-04, 3X-04, 3L-04, 3-04, 3L-18, 3-18, 3-28, 3-39, 3-49, 3-60, 3-71
A/C/G™	6	High-stre bonded to alloy core	ngth carbon fiber o a precision 7075 tube	A/C/E Insert	Screw-in, One-piece, A/C/E or A/C/G Stainless Steel Break-off	A/C/E & A/C/G Pin or Insert Nock	Pin Nocks or G Nock	±0.5 grain	±.002"	Polished Black Carbon	1500, 1300, 1150, 1000, 880, 810, 710, 660, 610, 540, 480, 430
FMJ MATCH™	14		ngth carbon core o a precision 7075 et	A/C/E Insert or Deep Six Insert	Screw-in, One-piece, Carbon One Stainless Steel Break-off	G Nock or G Pin Nock	G Nock	±2 grains	±.001"	Polished Silver finish	530, 490, 450, 400, 375
Carbon	Pa#	Materials/0	Construction			Nock System	Nock Type	Weight Tolerance⁴	Straightness ²		
CARBON ONE™	8		carbon fibers	A/C/E Insert	Carbon One	A/C/E Pin, Carbon One Pin, or insert Nock	Pin Nock, Pin G Nock, G Nock	±1 grains	±.003"	Black, Micro-smooth Finish	2000, 1800,1600,1400,1150, 1000, 900, 810, 730, 660, 600, 550, 500, 450, 410
HYPERSPEED [™] HYPERSPEED [™] PRO	8	UltraLite	carbon fibers	CB Insert	CB and RPS	NA	3D Super, Super, or S	±2 grains	±.003" ±.001"	Black, Smooth-matte Finish	500, 400, 340, 300
APOLLO TM	10	UltraLite (carbon fibers	A/C/E Insert	Apollo One-Piece	A/C/E Pin, Carbon One Pin, or insert Nock	Pin Nock, Pin G Nock, G Nock	±2 grains	±.005"	Black, Micro-smooth Finish	2000, 1800,1600,1400, 1200, 1070, 950, 840, 740, 670, 610, 560
SUPERDRIVE 23™	12	Multi-laye Carbon fik	er wrapped ber	40 gr.	One-piece	Super UNI, G Nock Uni, or G Pin Nock	3D, Super, G Nock, or Pin Nock	±1 grains	±.003"	Black, Smooth-matte Finish	475, 375, 325
SUPERDRIVE 25™	12	Multi-laye Carbon fil	er wrapped ber	50 gr.	One-piece	Super UNI, G Nock Uni, or G Pin Nock	3D, Super, G Nock, or Pin Nock	±1 grains	±.002"	Black, Smooth-matte Finish	290
SUPERDRIVE 27 [™] SUPERDRIVE 27 [™] PRO	12	Multi-laye Carbon fil	er wrapped ber	NA	One-piece	Super UNI, G Nock Uni, or G Pin Nock	3D, Super, G Nock, or Pin Nock	NA	±.005" ±.002"	Black, Smooth-matte Finish	270
INSPIRE™	10	Small dia pultruded		NA	Zinc One-piece Point	NA	G Nock or X Nock	NA	NA	Black, Smooth-matte Finish	2000, 1800,1600,1400, 1200, 1000, 900, 750, 630, 570
Aluminum		Aerospace Alloy	e Strength³ (psi)			Nock System	Nock Type	Weight Tolerance ⁴	Straightness ¹	Color/Finish	
X ² 3™ X ² 7™	14	7178-T9	105,000	RPS Insert	NIBB, One-Piece Bullet or RPS Point	Super UNI System	3D Super, Super Nock or S Nock	±3/4%	+.001"	Diamond Polished Silver Anodized	2712, 2312, 2314, 2315, 2318
ECLIPSE TM	16	7178-T9	105,000	Not Available	NIBB or One-piece Bullet	UNI or Super UNI System	3D Super Super Nock S Nock or G Nock	±3/4%	±.001"	Hard-Anodized Polished Black	1514, 1614, 1714, 1814, 1914, 2014, 2114, 2212, 2213, 2214, 2311, 2312, 2314, 2315, 2412, 2413, 2511, 2512, 2612, 2613, 2712
XX75 PLATINUM° PLUS	20	7075-T9	96,000	RPS Insert	NIBB, One-piece Bullet, or RPS Point	UNI or Super UNI System	3D Super Super Nock or S Nock	±1%	±.002"	Hard-Anodized Platinum Grey	1416, 1516, 1616, 1713, 1716, 1813, 1816, 1913, 1916, 2013, 2016, 2114, 2213, 2315
JAZZ°	20	7075	90,000	RPS Insert 1716 & up	NIBB, One-piece Bullet, or RPS Point	Full-Diameter Taper Swage	Conventional or G Nock ⁶	±2%	±.005"	Hard-Anodized Purple/Silver	1214 ⁶ , 1413, 1416, 1516, 1616, 1716, 1816, 1916, 2016
TRIBUTE TM	20	7075	90,000	RPS Insert 1716 & up	NIBB, One-Piece Bullet or RPS Point	Full-Diameter Taper Swag	Conventional or G Nock	<u>+</u> 2%	<u>+</u> .005"	Hard-Anodized Black	1214 ⁶ , 1413, 1416, 1516 1616, 1716, 1816,1916, 2016
GENESIS TM	16	7075	90,000	Not Available	One-piece Point	Full-Diameter	N Nock	±2.5 grains	±.005"	Hard-Anodized Bright Blue, Orange, Black	1820
NEOS™	20	7075	90,000	Not Available	One-piece Point	Full-Diameter Taper Swage	Conventional	±5%	±.008"	Hard-Anodized Gold	1618
			t to more stringent star t or exceed similar carb	ndards than ATA/A			fts in a dozen bundle. nly.		Eclipse and Platii System and G No	num Plus sizes in italic	s use UNI

The Easton arrow shaft limited warranty covers any defects in material and/or workmanship for one year from the original owner's date of purchase. Arrow shafts that are defective will be replaced by your local Easton dealer with proof of purchase. Damage caused by impact from other arrows, impact with hard objects, improper cleaning or fletching, or from normal wear and tear is not covered by Easton's limited warranty. The limited warranty also does not cover damage resulting from your failure to follow Easton's written instructions. For written instructions and warranty details see www.eastonarchery.com.

For more information on arrow preparation and assembly, visit: WWW.EASTONARCHERY.COM

ALUMINUM SHAFT COMPONENT SPECIFICATIONS

	.01-1		71-1 0117		<u> </u>	Ol-II	JIVL	<u> </u>		,,,,,	7//0	710
	Shaft Weight		Spine @ 28"	Stock Length ³		Conventional Nock Size ⁴	UNI System ^s		NIBB Point	One-piece	RPS ⁷	RPS ⁷ Point
Size	XX751	X7 ²	Span	XX751	X7 ²	J126	UNI Bushing ⁶	Super UNI Bushing1 ^o		Bullet Point	Insert Alum.	Size
	Grains per Inch		Deflection in Inches	Inches								
1214	5.9	_	2.501	261/2		_	_	_	_	45	_	
1413	5.9	_	2.036	26		7/32	_	_	_	35	_	_
1416	7.2	_	1.684	27	_	7/32	2	<u> </u>	46	52	_	_
1514	_	6.8	1.379	_	261/2	_	5	_	61 ⁹	_	_	_
1516	7.3	_	1.403	271/2	_	1/4	3	_	48	54	_	_
1614		7.7	1.153		28	<u> </u>	5		51			
1616	8.4		1.079	281/2		1/4	5		56	63		
1618	9.8		0.957	321/2		1/4				50		
1713	7.4		1.044	29			7		54			
1714		8.1	0.963		29		7		56			
1716	9.0		0.880	29		1/4	7		60	68	10	17/64
1813	7.9		0.874	30		1/4	8	_	56		14	9/32
1814		8.6	0.799		291/2		8		60			
1816	9.3	<u> </u>	0.756	30		9/32	8		63	74	12	9/32
1820	12.2		0.592	291/2		9/32				59		
1913	8.3		0.733	31		9/32	9		64		18	5/16
1914	_	9.3	0.658		30½		9		64			
1916	10.0		0.623	31		9/32	9		72	82	16	5/16
2013	9.0	_	0.610	32				5	68		21	5/16
2014		9.6	0.579		31½	<u> </u>	(10)	5	71			
2016	10.6		0.531	32				4	80	90	20	5/16
2114	9.9	9.9	0.510	31	32½		(11)	7	78	100	25	5/16
2212	<u> </u>	8.8	0.505		32½		(13)	9	102 ⁹	100	31	11/32
2213	9.8	9.9	0.458	31	331/2		(13)	9	88	100	30	11/32
2214	_	10.4	0.425		33		(13)	9	103 ⁹	100		
2311		8.9	0.450		33	_	(15)	11	99 ⁹	100	37	11/32
2312	_	9.5	0.423		33		(15)	11	99 ⁹	100	37	11/32
2314	10.7	10.8	0.391	32	33½		(14)	10		100	34	11/32
2315	11.7	11.8	0.342	32	34	_		11		100	37	11/32
2318	13.7		0.300	341/4			(47)	11		200		
2412	_	9.7	0.400		34	_	(17)	12	110	100	40	11/32
2413	_	10.5	0.365		34		(17)	12	110	100	40	11/32
2511	_	9.6	0.348		34	<u> </u>	(20)	15	1089	100	52	11/32
2512	_	10.3	0.321		34½	_	(20)	15	1089	100	52	11/32
2612	_	10.7	0.285		34½	_	(22)	17		150	58	3/8
2613		11.5	0.265		34½		(22)	17		150	58	3/8
2712		11.3	0.260		341/2			19		150/300		

⁻ Indicates not available

▲ WARNING!: FOLLOW THESE INSTRUCTIONS TO AVOID PERSONAL INJURY. SEE WARNINGS AND USE AT WWW.BSAFE.WS OR 877-INFO-ETP (877-463-6387).

BOW INSPECTION

Before shooting any Easton arrow, it is critical to inspect your bow, including all components, to be sure that it is properly adjusted and in good working order. Easton arrows should only be used with bows that have a correct pull weight and draw length (see arrow selection chart at www.eastonarchery. com/shaft-selector/). Selecting the correct arrow and arrow length for the bow is the responsibility of the shooter, and failure to do so could result in personal injury and/or equipment damage. **WARNING!** NEVER SHOOT AN ARROW WITH AN IMPROPERLY ADJUSTED OR DAMAGED BOW.

ARROW BREAKAGE

Any arrow can become damaged. A damaged arrow could break upon release and injure you or a bystander. Damage to an arrow shaft, or any of its components, may occur from improper transport, handling, or use; impacts with hard objects or other arrows; or, after being shot into a game animal. No list can cover all possible conditions and situations that may cause damage. Use good judgment and common sense, as well as follow the warnings and instructions below, to determine if your arrow has been damaged in any way.

WARNING! NÉVER SHÓOT Á DAMAGED ARROW.

ARROW USE PRECAUTIONS

Before each shot (including the first shot of a new arrow) carefully inspect each arrow shaft and all arrow components to see that they have not been damaged. Before shooting, place the arrow between your thumb and fingers, and using your other hand to slowly rotate the shaft, run your fingertips along the entire arrow length, feeling and looking closely for nicks, cracks, splits, dents, or other marks that could indicate the shaft has been damaged (see arrow inspection video at www.eastonarchery.com/warning-use/). If your arrow is crested, inspect for damage on the crest surface and for any soft spots under the crest wrap. You may need to remove the cresting to make a thorough inspection. If damage is present, DISCARD THE ARROW.

WARNING! NEVER SHOOT A DAMAGED ARROW.

Before each shot, inspect the nock for damage and check that it is fully seated, and fits tightly in the shaft. Apply twisting pressure to see if the nock turns easily. If the nock has backed out of the arrow or turns easily, inspect for cracks in the arrow shaft. If there are cracks in the arrow shaft, or if the nock is loose, DISCARD THE ARROW. WARNING! NEVER SHOOT A DAMAGED ARROW. If the nock is damaged, REPLACE THE NOCK.

WARNING! NEVER SHOOT AN ARROW WITH A DAMAGED NOCK.

ADDITIONAL TESTS FOR CARBON ARROWS

When checking carbon arrows, perform the following additional tests:

1. Grasp the shaft just above the point and below the nock, then flex the arrow in an arc (bending it away from you and others) with a deflection of 1 to 2 inches (2.5 to 5 cm), and feel and listen for cracking (Figure 1).

Perform this test 4 to 6 times, rotating the arrow slightly between each flex until you have gone around the entire arrow. If you hear or feel cracking, the carbon has been damaged, DISCARD THE ARROW.

WARNING! NEVER SHOOT A DAMAGED ARROW.

2. While still holding the point and fletching ends of the arrow, twist the shaft in opposite directions (Figure 2). If the arrow "relaxes" or twists easily, the carbon has been damaged. DISCARD THE ARROW.

WARNING! NEVER SHOOT A DAMAGED ARROW.

A damaged arrow could break upon release and injure you or a bystander. If you have any reason to believe that an arrow has been damaged, DISCARD THE ARROW. **WARNING!** NEVER SHOOT A DAMAGED ARROW.

CARBON ARROW CUTTING

Only cut a carbon arrow using a high-speed arrow cut-off saw. Using any other saw or cutting device may cause damage to the arrow. If an arrow has been cut without using a high-speed arrow cut-off saw, DISCARD THE ARROW. WARNING! NEVER SHOOT A DAMAGED ARROW.

To reduce your risk of serious injury or death, you must read and understand all safety warnings and instructions. If you do not understand these instructions, or cannot adequately perform the above tests, **STOP** and seek appropriate assistance before shooting any arrow.

WARNING: Cancer and Reproductive Harm—www.P65Warnings.ca.gov

Some of the products listed in this Product Guide may be subject to California Proposition 65 warnings requirements. See productpackaging or website for specific warning information. This Product Guide is intended for informational purposes only, not a solicitation for product sales

³ Tensile strength value may vary $\pm 3\%$.

^{6 1214} size Jazz uses direct-fit G Nock.

System and G Nock. ®/™ Reaistered Trademark of Easton.

¹ XX75 Tribute, Jazz, Platinum Plus, Genesis.

³ Length is approximate stock shaft length for each size. 4 Nock size for conventional swaged nock taper.

⁵ UNI-Universal Nock Installation System.

^{6.} Parentheses indicate smaller G Nock LINI Rushing size is available as an ontional accessory. 7 RPS = Replaceable Point System with 8-32 ATA Standard thread.

⁸ NIBB point grain weights are ± 0.5 grain. All other components are ± 1 grain.

⁹ This NIBB point will provide approximately an 8% F.O.C. All other NIBB points are approximately 7% F.O.C. F.O.C. is Front-of-Center balance position on the arrow shaft.

¹⁰ Super UNI Bushing accepts Super, S, 3D Super Nock, and